

VTX Overview

- 2 Subsystems:
 - Pixel (inner 2 barrels)
 - StriPixel (outer 2 barrels)
- Pixel Barrels
 - 30 Ladders or 60 ½ ladders
 - All IR electronics "on" detector
 - Power:
 - SPIRO: 5V (supply) 1200W
 - Pixel 1/2-Ladder: 4V (supply) 1000W
 - < 50V silicon bias voltage, mA scale</p>
 - FEM located in Rack Room
 - 300 fibers from IR to Rack Room

Columbia University IN THE CITY OF NEW YORK

VTX Overview

- StriPixel Barrels
 - 44 Ladders
 - Electronics "on" and "off" detector
 - Power-<u>Ladders</u>
 - Analog: 4V (supply) 1000w
 - Digital: 5V (supply) 1300W
 - Bias: < 250V, mA scale
 - Power- FEMs
 - Still not designed
 - Estimate 5V, 750W total
 - ~55 Fibers from IR to Rack Room

Bias Supply

- Currently Evaluating system from Wiener/ISEG
 - 16 Channels per module
 - 10 modules per crate
 - Crate is 8Us
 - Share crate between Pixel and StriPixel systems

VTX Low Voltage

- Design Guidelines
 - Isolated power and return on a ½ ladder basis
 - Common return (SPIRO/Pixel Bus) for each ½ ladder
 - High reliability
- Current Options
 - PHENIX Standard LVLP System
 - New design by Steve Boose based on MuTr power system
- Expect 1-2 Crates required.
- Discussion of options next week at quarterly meeting

VTX StriPixel FEMs

- Design is still conceptual until functionality of ROC-3 is known
- Current plan is for:
 - 4 Crates
 - 4 Controllers
 - GTM Fiber
 - Slow control fiber/cable
 - 44 FEMs
 - One fiber per FEM
 - One LVDS Signal cable per FEM
 - 6U form factor
 - Space for cooling and power

VTX Rack Requirements

- 3-4 Racks in IR (depending on power supply choices)
 - 1.5-2 Racks for Stipixel FEMS
 - 1-1.5 Racks for power supplies
 - Aux Crate for monitoring infrastructure?
- Fiber patch panel
 - 300 fibers from Pixel system
 - 50 fibers for Stripixel System
- 1 Rack (Partial?) in Rack Room
 - 2 Pixel FEM Crates
 - VME 6U crate

FVTX Overview

- All Electronics "on" detector or in rack room
- Only power supplies will require rack space in IR
- 4 Disks in each end cap
 - 48 Wedges per disk
 - 384 Wedges total
- 12 ROCs per endcap
 - 16 wedges per ROC
 - Located in big wheel of VTX/FVTX enclosure
- 2 FEMS per ROC
 - Total of 48 FEMS
 - Located in Rack Room

FVTX Power

- Planning on using same Bias Supply system
 - Bias Voltage 100-200 V
 - 384 silicon sensors
 - Group several silicon sensors on single bias voltage
 - Separate crate from VTX
- Low Voltage Requirements (Estimate)
 - Wedges: 4V supply, 500W
 - ROCs: 5V supply, 1250-1500W

FVTX Rack Requirements

- 1-2 Racks in IR
 - 1 Bias Supply Crate
 - 1-2 Power supply crates depending on segmentation and channel power requirements
 - Aux Crate for monitoring infrastructure
- Fiber Patch panel
 - 288 fibers
 - Run from Big Wheel to Rack Room
- 1-2 Racks in Rack Room
 - 4 FEM Crates
 - 6 U crate size